The Search for Extra Dimensions at Present Colliders

Stefan Ask
(Lund University / DELPHI)

Studies
- Graviton Emission
- Virtual Graviton Exchange
- Branon Search
- Gauge boson KK modes
- TeV String Search
- Radion Search
- Graviton Resonances
Outline

Introduction
- The theoretical scenarios

Graviton Emission
- ADD Scenario
 - ALEPH DELPHI L3 Final Results
 - **ADLO Combined Results**
 - CDF D0 Results

Graviton Exchange
- ADD Scenario
 - ADLO Combined Results
 - CDF D0 H1 ZEUS Results

Branon Search
- ADD Scenario
 - L3 Results

Main Data Sets

- **Gauge Boson KK modes** (ADD Scenario)
 - D0 H1 Results

- **TeV String Search** (ADD Scenario)
 - L3 Results

- **Radion Search** (ADD Scenario)
 - RS Scenario
 - OPAL Results

- **Graviton Resonances** (ADD Scenario)
 - RS Scenario
 - CDF D0 Results

Theoretical scenarios

- ADD Scenario
- RS Scenario

All Limits Computed at 95% CL

Stefan Ask, Lund University
The Search for Extra Dimensions at Present Colliders
Stockholm, 2005
Extra Dimensions and Branes

Mainly Two Brane Scenarios Studied

- The ADD Scenario
- The Randall-Sundrum scenario (RS1)

Brane with 3 Spatial Dimensions in Bulk with D-3 Additional (Extra) Dimensions

- Brane picture suggested by several String Models
- Gravity weak on the brane since it acts in a more extended space than the brane
- Gravity Phenomena appear at, \(M = [M_D, \Lambda_w] \sim 1 \text{ TeV} \)

 \[M \ll M_p \]
 "Solves" the hierarchy problem

- SM particles confined to the brane
- Gravity propagates in whole D-dim space
- (Non-SM Gauge bosons propagates in some extra dim)
Gravity Phenomena in 4-dim (on the brane)

Compactified Extra Dimensions

- Graviton Kaluza-Klein Modes (KK-tower)

\[m_{KK}^2 = \sum_d p_d^2, \quad d = 4, ..., D \]

Effective 4-dim Theory below \(M_D \)

- Massive KK spin-2 gravitons, \(G^{(n)}_{\mu\nu} \)
- Massive KK scalar gravitons, \(H^{(n)} \)
 - Including the Radion (n=0)
- Massive scalar branons, \(\tilde{\pi} \)
 - Possible particles related to the brane dynamics

Particles Searches

- The ADD Scenario
 - Spin-2 graviton (Rigid brane)
 - Branons (Flexible brane)
- The Randall-Sundrum scenario (RS1)
 - Spin-2 graviton
 - Radion
The ADD Scenario (Large Extra Dimensions)
(* N. Arkani-Hamed, S. Dimopoulos, G. Dvali)

Extra dimensions are
• **Compactified**
 (normally assumed on a torus and with equal radii, R)
• **Large**
 (R up to about 1mm)

Bounds
Gravity Experiment, Cosmology and Astrophysical Constraints

- No hierarchy due to large volume of the compactified space
 \[M_p^2 = 8\pi R^n M_D^{n+2} \]
 \[M_D \sim 1 \text{ TeV} \]
- Dense KK-tower
 \[\Delta m_{KK} \propto 1/R \]

1-dim, Newton's law would be changed at solar system distances
2-dim, Strong bounds
> 2-dim, Relatively weak bounds

Processes (at LEP)

Rigid Brane
\[f \gg M_D \]

Graviton Emission:
\[e^+ e^- \to G + \gamma \]

Graviton Exchange:
\[e^+ e^- \to G^* \to ff + \gamma \gamma \]

Flexible Brane
\[f \ll M_D \]

Branon Production:
\[e^+ e^- \to \tilde{\pi} \tilde{\pi} + \gamma / Z \]

Graviton processes exponentially suppressed,
\[e^{-M_p^2 s \left(1 - \frac{x}{2\pi} \right) f^+ (2\pi)^2} \]

Stefan Ask, Lund University
The Search for Extra Dimensions at Present Colliders
Stockholm, 2005
\(e^+ e^- \rightarrow G + \gamma \)

\[
\frac{d^2 \sigma}{dx \gamma d \cos(\theta \gamma)} = \left(\frac{\sqrt{s}}{M_D^{n+2}} \right)^n F(n, x, \gamma, \theta \gamma)
\]

Single photon process directly sensitive to the fundamental scale of gravity \((M_D)\) and the number of dimensions \((n)\).

\(e^+ e^- \rightarrow G^* \rightarrow \gamma \gamma \)

\[
\frac{d \sigma}{d \cos(\theta)} = F(\lambda / M_H^4)
\]

Fermion and photon pair process sensitive to cut-off mass scale \((M_H)\) and the coupling \((\lambda)\).

\(\lambda = \pm 1 \) Used in the analysis

\(e^+ e^- \rightarrow \tilde{\tau} \tilde{\tau} + \gamma / Z \)

\(\tilde{\tau} \) Photon distributions similar to Graviton emission process

\[
\frac{d^2 \sigma}{dx \gamma d \cos(\theta \gamma)} = \frac{n_b}{x s} F(M_b, x, s) G(x, \gamma, \theta \gamma)
\]

Branon process sensitive to number of branons \((n_b)\), branon mass \((M_b)\) and brane tension \((f)\).

\(n_b = 1 \) Used in the analysis

\(n = 2 \)

\(M_D = 1.5 \text{ TeV} \)
The Signals at HERA and the Tevatron (ADD)

Graviton Emission
(Similar to $e^+ e^- \rightarrow G + \gamma$)

$[n , M_D]$

Virtual Graviton Exchange
(Similar to $e^+ e^- \rightarrow G^* \rightarrow ff / \gamma \gamma$)

$[\lambda , M_H \text{ cut-off}]$

CDF + D0: mono-jet + missing E_T

CDF + D0: High mass $ee, \mu\mu, \gamma\gamma$

$q \bar{q} \rightarrow G^* \rightarrow ff / \gamma \gamma$
(Drell-Yan like)

H1 + ZEUS: High Q^2 DIS

$e^\pm q \rightarrow (G^*) \rightarrow e^\pm q$
(Neutral-current like)

Stefan Ask, Lund University

The Search for Extra Dimensions at Present Colliders

Stockholm, 2005
ADLO: Graviton + γ Production

Results using year 2000 & 1999 data not available yet.

Low-energy photon selection barrel only

Good Agreement between Data and SM Expectation for ALEPH, DELPHI, L3 and OPAL
ADLO: Graviton + γ Production

No Indications of a Signal

<table>
<thead>
<tr>
<th>n</th>
<th>ALEPH</th>
<th>DELPHI</th>
<th>L3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.26</td>
<td>1.31 (1.27)</td>
<td>1.50 (1.49)</td>
</tr>
<tr>
<td>3</td>
<td>0.95</td>
<td>1.02 (0.98)</td>
<td>1.14 (1.12)</td>
</tr>
<tr>
<td>4</td>
<td>0.77</td>
<td>0.82 (0.80)</td>
<td>0.91 (0.89)</td>
</tr>
<tr>
<td>5</td>
<td>0.65</td>
<td>0.67 (0.67)</td>
<td>0.76 (0.75)</td>
</tr>
<tr>
<td>6</td>
<td>0.57</td>
<td>0.58 (0.58)</td>
<td>0.65 (0.64)</td>
</tr>
<tr>
<td>7</td>
<td>---</td>
<td>---</td>
<td>0.57 (0.56)</td>
</tr>
<tr>
<td>8</td>
<td>---</td>
<td>---</td>
<td>0.51 (0.51)</td>
</tr>
</tbody>
</table>

Final M_D Limits (TeV) [Obt. (Exp.)]

ALEPH and DELPHI show a similar sensitivity whereas that of L3 is higher.
Combined: Graviton + γ

Measurement of scaling factor, \(x = \frac{1}{(M_D)^{n+2}} \)

Combined Likelihood

\[
\mathcal{L}(x) = \mathcal{L}(x)^{ALEPH} \times \mathcal{L}(x)^{DELPHI} \times \mathcal{L}(x)^{L3}
\]

\[
CL = \frac{\int_0^{x_{95}} \mathcal{L}(x) \, dx}{\int_0^{\infty} \mathcal{L}(x') \, dx'} = 0.95
\]

L3 DELPHI Preliminary

ADL Combined Limit

<table>
<thead>
<tr>
<th>(n)</th>
<th>(1/(M_D)^{n+2})</th>
<th>(M_D) (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-0.02 +/- 0.08</td>
<td>> 1.60</td>
</tr>
<tr>
<td>3</td>
<td>-0.09 +/- 0.22</td>
<td>> 1.20</td>
</tr>
<tr>
<td>4</td>
<td>-0.3 +/- 0.8</td>
<td>> 0.94</td>
</tr>
<tr>
<td>5</td>
<td>-0.9 +/- 3.3</td>
<td>> 0.77</td>
</tr>
<tr>
<td>6</td>
<td>-4.8 +/- 15.2</td>
<td>> 0.66</td>
</tr>
</tbody>
</table>
CDF/D0: Graviton + Jet Production

$p \bar{p} \rightarrow Jet + E_T$

Tevatron Run I Limits

<table>
<thead>
<tr>
<th>n</th>
<th>CDF M_D (TeV)</th>
<th>D0 M_D (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>> 1.00</td>
<td>> 0.89</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>> 0.73</td>
</tr>
<tr>
<td>4</td>
<td>> 0.77</td>
<td>> 0.68</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>> 0.64</td>
</tr>
<tr>
<td>6</td>
<td>> 0.71</td>
<td>> 0.63</td>
</tr>
</tbody>
</table>

[Preliminary Run II Results]
Combined: Graviton + γ

- **Graviton + γ**

![Graph of Graviton + γ](image)

ALEPH DELPHI L3

Preliminary

e\(^+\)e\(^-\) → γG

- **LEP limits increasingly stringent with lower number of extra dimensions compared to the D0/CDF results**

(D0/CDF results are based on Run I data only)

\[
G_N^{-1} = 8\pi R^n M_D^{n+2}
\]

<table>
<thead>
<tr>
<th>(n)</th>
<th>(R (mm))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>< 0.19</td>
</tr>
<tr>
<td>3</td>
<td>< 2.6x10(^{-6})</td>
</tr>
<tr>
<td>4</td>
<td>< 1.1x10(^{-8})</td>
</tr>
<tr>
<td>5</td>
<td>< 4.1x10(^{-10})</td>
</tr>
<tr>
<td>6</td>
<td>< 4.6x10(^{-11})</td>
</tr>
</tbody>
</table>

Stefan Ask, Lund University

The Search for Extra Dimensions at Present Colliders

Stockholm, 2005
ADLO: Virtual Graviton Exchange

Fit to LEP combination of the differential Bhabha and photon pair cross section (Fit-Parameter, $x_H = \frac{\lambda}{M_H^4}$)

Preliminary LEP Averaged $\frac{d\sigma}{d\cos\Theta}(e^+e^-)$

- $e^+ e^- \rightarrow e^+ e^-$
- $M_H > 1.20 TeV (\lambda = +1)$
- $M_H > 1.09 TeV (\lambda = -1)$

- $e^+ e^- \rightarrow \gamma \gamma$
- $M_H > 0.93 TeV (\lambda = +1)$
- $M_H > 1.01 TeV (\lambda = -1)$
CDF/D0+H1/ZEUS : Virtual Graviton Exchange

CDF: \(q\bar{q} \rightarrow G^* \rightarrow ee \)

D0: \(q\bar{q} \rightarrow G^* \rightarrow ee \gamma\gamma \)

H1 / ZEUS: \(e^\pm q \rightarrow (G^*) \rightarrow e^\pm q \)

Diagrams:

- **CDF / D0:** \(M_H > 0.96 / 1.28 \)
 - **H1 / ZEUS:** \(0.82 / 0.78 \) **TeV** (\(\lambda = +1 \))
 - \(M_H > 0.99 / 1.16 \)
 - **H1 / ZEUS:** \(0.78 / 0.79 \) **TeV** (\(\lambda = -1 \))

Stefan Ask, Lund University

The Search for Extra Dimensions at Present Colliders

Stockholm, 2005
L3: Branon Search

\[e^+ e^- \rightarrow \tilde{\pi} \tilde{\pi} + \gamma / Z \]

- Single photon events
 (as for the G+γ search)

- Single Z signature events
 (Unbalanced hadronic events with visible mass compatible with m_z)

Diagram:

- **Data, \(\sqrt{s} = 198 \text{ GeV} \)**
- **Background**
- **SM + branon signal (f=40 \text{ GeV})**

Legend:

- \(\tilde{\pi} \tilde{\pi} \gamma \): \(f > 180 \text{ GeV} \), \(M_b > 103 \text{ GeV} \)
- \(\tilde{\pi} \tilde{\pi} Z \): \(f > 47 \text{ GeV} \), \(M_b > 54 \text{ GeV} \)

Stefan Ask, Lund University The Search for Extra Dimensions at Present Colliders Stockholm, 2005
D0+H1: Gauge Bosons in TeV⁻¹ Sized Extra Dimensions

If gauge bosons have access to (ADD like) extra dimensions of the size, \(R = M_C^{-1} \sim \text{TeV}^{-1} \)

Gauge bosons with mass, \(M_{KK}^2 = m_0^2 + \frac{n^2}{R^2} \)

E.g. \(\gamma_{(n=0)} = \gamma_{SM} \)

\(\gamma_{(n>0)} \rightarrow m_{\gamma_{(n^\prime)}} = n' M_C \)

\(M_C \gg \sqrt{s} \) assumed

“Contact interactions” (virtual contributions)

(* K. Cheung, G. Landsberg)

Phenomenological study from existing data

<table>
<thead>
<tr>
<th>(\eta) (TeV⁻²)</th>
<th>(\eta_{95}) (TeV⁻²)</th>
<th>(M^\text{emp}) (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEP 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hadronic cross section, avg. dist., (R_{ee})</td>
<td>(-0.33^{+0.13}_{-0.13})</td>
<td>(0.12)</td>
</tr>
<tr>
<td>(\mu), (e) cross section & avg. dist.</td>
<td>(0.69^{+0.13}_{-0.13})</td>
<td>(0.42)</td>
</tr>
<tr>
<td>ee cross section & avg. dist.</td>
<td>(-0.52^{+0.20}_{-0.20})</td>
<td>(0.16)</td>
</tr>
<tr>
<td>LEP combined</td>
<td>(-0.28^{+0.09}_{-0.09})</td>
<td>(0.076)</td>
</tr>
<tr>
<td>HERA:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>(-2.74^{+1.49}_{-1.35})</td>
<td>(1.59)</td>
</tr>
<tr>
<td>CC</td>
<td>(-0.57^{+1.25}_{-1.31})</td>
<td>(2.45)</td>
</tr>
<tr>
<td>HERA combined</td>
<td>(-1.21^{+2.95}_{-3.39})</td>
<td>(1.25)</td>
</tr>
<tr>
<td>Tevatron:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drell-Yan</td>
<td>(-0.57^{+1.12}_{-1.05})</td>
<td>(1.96)</td>
</tr>
<tr>
<td>Tevatron dijet</td>
<td>(0.46^{+0.37}_{-0.34})</td>
<td>(1.0)</td>
</tr>
<tr>
<td>Tevatron top production</td>
<td>(-0.53^{+0.31}_{-0.33})</td>
<td>(9.2)</td>
</tr>
<tr>
<td>Tevatron combined</td>
<td>(-0.38^{+0.32}_{-0.38})</td>
<td>(0.65)</td>
</tr>
<tr>
<td>All combined</td>
<td>(-0.29^{+0.09}_{-0.09})</td>
<td>(0.071)</td>
</tr>
</tbody>
</table>

D0 \[q \bar{q} \rightarrow ee \]

\(M_C > 1.12 \text{ TeV} \)

H1 \[e^+ q \rightarrow e^+ q \] (NC)

\(M_C > 1.0 \text{ TeV} \)

Stefan Ask, Lund University

The Search for Extra Dimensions at Present Colliders

Stockholm, 2005
L3: TeV String Search

String model with ADD extra dimensions
(* S. Cullen, M. Perelstein and M. Peskin ;
E.Accomando, I. Antoniadis and K. Benakli)

- Effect on Bhabha scattering of TeV scale strings

\[
\frac{d \sigma}{d \cos \theta} = \left(\frac{d \sigma}{d \cos \theta} \right)_{SM} \left| F (M_S) \right|^2
\]

\[M_S = [\text{String scale}] = (1.6 − 3.0) \times M_D\]

- This TeV string effect would typically dominate over virtual graviton exchange

Obtained Limit
\[M_S > 0.55 \text{ TeV}\]
The RS Scenario (RS1)
(* L. Randall and R. Sundrum)

Non-factorizable “warped” geometry

\[ds^2 = e^{-2kr_c\phi} \eta_{\mu\nu} dx^\mu dx^\nu + r_c^2 d\phi^2 \]

Gravity exponentially damped by “warp-factor”

Two Branes:
- SM confined to one brane (SM-brane)
- Gravity concentrated to the other brane (Planck-brane, due to “warped” geometry)

One Extra Dimension: (between the branes)
- Gravity exponentially damped with increasing distance from the Planck brane
 - Weak gravity on SM brane
- Local fluctuations of inter-brane distance
 - The Radion, massive scalar
- Small \(r_c \) and sizable graviton coupling
 - Spin-2 Graviton Resonances

\(r_c = \) Compactification radius (VERY small)

Gravity Scale: \(\Lambda = M_P e^{-k r_c \pi} \sim TeV \)
The RS Scenario

Radion have same Quantum Numbers as the Higgs

- Higgs – Radion mixing, into one Higgs-like and one Radion-like state (h & r)

Both h and r are mainly produced at LEP in the “Higgs-strahlung” process

\[e^+ e^- \rightarrow Z + h/r \]

Which depends on the RS parameter space

\[\xi = \text{Mixing parameter} \]
\[\Lambda = \text{Mass scale on SM brane} \]
\[m_h = \text{Mass of Higgs-like state} \]
\[m_r = \text{Mass of Radion-like state} \]

(* C. Csaki, M.L. Graesser and G.D. Kribs)

First Graviton KK mode \(G^{(n=1)} \) will be in the order of a TeV

- LEP and HERA are insensitive
- Possible graviton resonance at the Tevatron

\[q \bar{q} \rightarrow G^* \rightarrow f f / \gamma \gamma \]

Which depends on the RS parameter space

\[\frac{k}{M_p} = \text{Curvature parameter} \quad (0.1-0.01 \text{ allowed}) \]
\[m_1 = \text{Mass of first graviton KK mode} \]
OPAL: Radion Search

\[e^+ e^- \rightarrow Z + h \ | r \]

Searches used:
- **Standard Higgs search**
 \[e^+ e^- \rightarrow Zh, h \rightarrow bb \]
- **Hadronically decaying Higgs search**
 \[e^+ e^- \rightarrow Zh, h \rightarrow qq/\text{gg} \]
- **Decay mode independent Higgs search**
 \[e^+ e^- \rightarrow Zh, h \rightarrow xx \]

- Excluded parameter space obtained by a parameter scan
- Point excluded if signal cross section exceeds the limit from any one of the three searches

Radion process suppressed with increasing \(\Lambda_w \) and at large negative mixing.
The search is sensitive to the h signal over the whole parameter space

Overall Higgs Limit

$m_h > 58 \text{ GeV}$ Obtained

$m_h > 54 \text{ GeV}$ Expected

Not possible for the radion state due to suppressed couplings with increasing Λ_w and decreased cross section at large negative mixing
CDF/D0: Graviton Resonance

D0 \(q\bar{q} \rightarrow G^* \rightarrow e\bar{e} l\gamma\gamma \)

CDF \(q\bar{q} \rightarrow G^* \rightarrow e\bar{e} \mu\mu \)

m_1 Limits (CDF / D0)

\[
m_1 > \frac{700}{785} \text{ GeV} \quad (k/M_p = 0.1)
\]

\[
m_1 > \frac{200}{300} \text{ GeV} \quad (k/M_p = 0.01)
\]

The Search for Extra Dimensions at Present Colliders

Stockholm, 2005
Conclusion

- Several extra dimension models have been investigated at LEP, HERA and the Tevatron, but no indication of a signal has been observed

![Exclusion Limits Diagram]

ADD

<table>
<thead>
<tr>
<th>n</th>
<th>M_D (TeV)</th>
<th>$G \gamma [\text{Jet}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>> 1.60</td>
<td>$M_H > 1.28 \text{ TeV} \ (\lambda = +1)$</td>
</tr>
<tr>
<td>3</td>
<td>> 1.20</td>
<td>$M_H > 1.16 \text{ TeV} \ (\lambda = -1)$</td>
</tr>
<tr>
<td>4</td>
<td>> 0.94</td>
<td>$\bar{\pi} \pi + \gamma / Z$</td>
</tr>
<tr>
<td>5</td>
<td>> 0.77</td>
<td>$f > 180 \text{ GeV} \ (M_b = 0)$</td>
</tr>
<tr>
<td>6</td>
<td>> 0.66 [> 0.71]</td>
<td>$M_b > 103 \text{ GeV} \ (f = 0)$</td>
</tr>
</tbody>
</table>

RS

<table>
<thead>
<tr>
<th>$Z + h / r$</th>
<th>$G (n=1) - \text{Resonance}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_h > 58 \text{ GeV}$</td>
<td>$m_1 > 785 \text{ GeV} \ (k/lM_p=0.1)$</td>
</tr>
<tr>
<td></td>
<td>$m_1 > 300 \text{ GeV} \ (k/lM_p=0.01)$</td>
</tr>
</tbody>
</table>

TeV String

| $e^+ e^- \to e^+ e^-$ | $M_s > 0.55 \text{ TeV}$ |

KK Modes

$q \bar{q} \to ee$

<table>
<thead>
<tr>
<th>$M_C > 1.12 \text{ TeV}$</th>
<th>(LEP EW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>($M_C > 6.6 \text{ TeV}$)</td>
<td></td>
</tr>
</tbody>
</table>

- The results give many important constraints on models with extra dimensions, however much remains to be investigated at the LHC!